Keeping Up With The Latest Techniques

~ brief insights

Keeping Up With The Latest Techniques

Tag Archives: Adaptive Thresholding

Denoising Dirty Documents: Part 11

08 Sunday Nov 2015

Posted by Colin Priest in Adaptive Thresholding, Background Removal, Deep Learning, Edge Detection, h2o, Image Processing, Kaggle, Machine Learning, Median Filter, Morphology, R

≈ 1 Comment

Tags

Adaptive Thresholding, Background Removal, Deep Learning, Edge Detection, h2o, Image Processing, Kaggle, Machine Learning, Median Filter, Morphology, R

In my last blog I showed how to use convolutional neural networks to build a model that removed stains from an image. While convolutional neural networks seem to be well suited for image processing, in this competition I found that deep neural networks performed better. In this blog I show how to build these models.

warnH022 - deep water

Since I wanted to use R, have limited RAM and I don’t have a powerful GPU, I chose to use h2o to build the models. That way I could do the feature engineering in R, pass the data to h2o, let h2o build a model, then get the predicted values back in R. The memory management would be done in h2o, which uses deep learning algorithms that adjust the RAM constraints. So I guess this combination of deep learning and h2o could be called “deep water” 😉

For my final competition submission I used an ensemble of models, including 3 deep learning models built with R and h2o. Each of the 3 deep learning models used different feature engineering:

  • median based feature engineering
  • edge based feature engineering
  • threshold based feature engineering

This blog shows the details of the median based model. I leave it to the reader to implement the edge based and threshold based models using the image processing scripts from my earlier blogs in this series.

If you don’t already have h2o installed on your computer, then you can install it directly from R. At the time of writing this blog, you could install h2o using the following script:


# The following two commands remove any previously installed H2O packages for R.
if ("package:h2o" %in% search()) { detach("package:h2o", unload=TRUE) }
if ("h2o" %in% rownames(installed.packages())) { remove.packages("h2o") }

# Next, we download packages that H2O depends on.
if (! ("methods" %in% rownames(installed.packages()))) { install.packages("methods") }
if (! ("statmod" %in% rownames(installed.packages()))) { install.packages("statmod") }
if (! ("stats" %in% rownames(installed.packages()))) { install.packages("stats") }
if (! ("graphics" %in% rownames(installed.packages()))) { install.packages("graphics") }
if (! ("RCurl" %in% rownames(installed.packages()))) { install.packages("RCurl") }
if (! ("jsonlite" %in% rownames(installed.packages()))) { install.packages("jsonlite") }
if (! ("tools" %in% rownames(installed.packages()))) { install.packages("tools") }
if (! ("utils" %in% rownames(installed.packages()))) { install.packages("utils") }

# Now we download, install and initialize the H2O package for R.
install.packages("h2o", type="source", repos=(c("http://h2o-release.s3.amazonaws.com/h2o/rel-tibshirani/3/R")))

That script will need to be changed as new versions of h2o are released. So use the latest instructions shown here.

Once h2o is installed, you can interface with h2o from R using the CRAN package.


install.packages("h2o")
library(h2o)

Median based image processing is used for feature engineering in this example, but you could use any combination of image processing techniques for your feature engineering. I got better performance using separate deep learning models for different types of image processing, but that may be because I had limited computing resources. If you have more computing resources than me, then maybe you will be successful with a single large model that uses all of the image processing techniques to create features.


# a function to turn a matrix image into a vector
img2vec = function(img)
{
 return (matrix(img, nrow(img) * ncol(img), 1))
}
 
median_Filter = function(img, filterWidth)
{
 pad = floor(filterWidth / 2)
 padded = matrix(NA, nrow(img) + 2 * pad, ncol(img) + 2 * pad)
 padded[pad + seq_len(nrow(img)), pad + seq_len(ncol(img))] = img
 
 tab = matrix(0, nrow(img) * ncol(img), filterWidth * filterWidth)
 k = 1
 for (i in seq_len(filterWidth))
 {
 for (j in seq_len(filterWidth))
 {
 tab[,k] = img2vec(padded[i - 1 + seq_len(nrow(img)), j - 1 + seq_len(ncol(img))])
 k = k + 1
 }
 }
 
 filtered = unlist(apply(tab, 1, function(x) median(x[!is.na(x)])))
 return (matrix(filtered, nrow(img), ncol(img)))
}
 
# a function that uses median filter to get the background then finds the dark foreground
background_Removal = function(img)
{
 w = 5
 p = 1.39
 th = 240
 
 # the background is found via a median filter
 background = median_Filter(img, w)
 
 # the foreground is darker than the background
 foreground = img / background
 foreground[foreground > 1] = 1
 
 foreground2 = foreground ^ p
 foreground2[foreground2 >= (th / 255)] = 1
 
 return (matrix(foreground2, nrow(img), ncol(img)))
} 

img2tab = function(imgX, f)
{
 median5 = img2vec(median_Filter(imgX, 5))
 median17 = img2vec(median_Filter(imgX, 17))
 median25 = img2vec(median_Filter(imgX, 25))
 backgroundRemoval = img2vec(background_Removal(imgX))
 foreground = readPNG(file.path(foregroundFolder, f))
 
 # pad out imgX
 padded = matrix(0, nrow(imgX) + padding * 2, ncol(imgX) + padding * 2)
 offsets = expand.grid(seq_len(2*padding+1), seq_len(2*padding+1))
 
 # raw pixels window
 padded[padding + seq_len(nrow(imgX)), padding + seq_len(ncol(imgX))] = imgX
 x = sapply(seq_len((2*padding+1)^2), function(x) img2vec(padded[offsets[x, 2] - 1 + seq_len(nrow(imgX)), offsets[x, 1] - 1 + seq_len(ncol(imgX))]))
 
 # x2 window
 padded[padding + seq_len(nrow(imgX)), padding + seq_len(ncol(imgX))] = median5
 x2 = sapply(seq_len((2*padding+1)^2), function(x) img2vec(padded[offsets[x, 2] - 1 + seq_len(nrow(imgX)), offsets[x, 1] - 1 + seq_len(ncol(imgX))]))
 
 # x3 window
 padded[padding + seq_len(nrow(imgX)), padding + seq_len(ncol(imgX))] = median17
 x3 = sapply(seq_len((2*padding+1)^2), function(x) img2vec(padded[offsets[x, 2] - 1 + seq_len(nrow(imgX)), offsets[x, 1] - 1 + seq_len(ncol(imgX))]))
 
 # x4 window
 padded[padding + seq_len(nrow(imgX)), padding + seq_len(ncol(imgX))] = median25
 x4 = sapply(seq_len((2*padding+1)^2), function(x) img2vec(padded[offsets[x, 2] - 1 + seq_len(nrow(imgX)), offsets[x, 1] - 1 + seq_len(ncol(imgX))]))
 
 # x5 window
 padded[padding + seq_len(nrow(imgX)), padding + seq_len(ncol(imgX))] = backgroundRemoval
 x5 = sapply(seq_len((2*padding+1)^2), function(x) img2vec(padded[offsets[x, 2] - 1 + seq_len(nrow(imgX)), offsets[x, 1] - 1 + seq_len(ncol(imgX))]))
 
 # x6 window
 padded[padding + seq_len(nrow(imgX)), padding + seq_len(ncol(imgX))] = foreground
 x6 = sapply(seq_len((2*padding+1)^2), function(x) img2vec(padded[offsets[x, 2] - 1 + seq_len(nrow(imgX)), offsets[x, 1] - 1 + seq_len(ncol(imgX))]))

 dat = data.table(cbind(x, x2, x3, x4, x5, x6))
 setnames(dat,c(
 paste("x", seq_len((2*padding+1)^2), sep=""), 
 paste("median5", seq_len((2*padding+1)^2), sep=""),
 paste("median17", seq_len((2*padding+1)^2), sep=""),
 paste("median25", seq_len((2*padding+1)^2), sep=""),
 paste("backgroundRemoval", seq_len((2*padding+1)^2), sep=""),
 paste("foreground", seq_len((2*padding+1)^2), sep="")
 ))
 
 return (dat)
}

If you’ve been following my blog, then you will see that there’s nothing new in the two image processing functions shown above.

To build the model you will need to start h2o, import the data and tell h2o to create a deep learning model.

h2oServer = h2o.init(nthreads = 6, max_mem_size = "10G")

trainData = h2o.importFile(h2oServer, path = outPath)
testData = h2o.importFile(h2oServer, path = outPath2)

model.dl.median <- h2o.deeplearning(x = 2:ncol(trainData), y = 1, training_frame = trainData, validation_frame = testData,
 score_training_samples = 0, 
 overwrite_with_best_model = TRUE,
 activation = "Rectifier", seed = 1,
 hidden = c(200, 200,200), epochs = 15,
 adaptive_rate = TRUE, initial_weight_distribution = "UniformAdaptive", loss = "MeanSquare",
 fast_mode = T, diagnostics = T, ignore_const_cols = T,
 force_load_balance = T)


You should change the h2o.init parameters according to the hardware on your computer. I’m running my model on a PC with 8 CPUs and 16GB of RAM, so I left a couple of CPUs free to do the user interface and core operating system functionality, plus some RAM for the operating system. Scale these parameters up or down if your PC specifications are more or less powerful than mine.

The model may take a few hours to fit. During that time R will not do anything. So if you want to see how the model is progressing, then point your browser to your localhost (port 54321 on my PC, but maybe a different port on yours) and use the h2o web interface to see what is happening.

You can get the predicted values using the following script:


filenames = list.files(dirtyFolder)
for (f in filenames)
{
 print(f)
 imgX = readPNG(file.path(dirtyFolder, f))

dat = img2tab(imgX, f)

x.h2o = as.h2o(h2oServer, dat)
 predict.dl = as.data.frame(h2o.predict(model.dl.median, newdata = x.h2o))
 imgOut = matrix(as.numeric(predict.dl$predict), nrow(imgX), ncol(imgX))
 
 # correct the pixel brightnesses that are out of bounds
 imgOut[imgOut > 1] = 1
 imgOut[imgOut < 0] = 0

writePNG(imgOut, file.path(outFolder, f))
}

h2o.shutdown()

Running predictions is as simple as creating a data file, importing it to h2o, and then asking h2o to give you the predicted values from your already fitted model. I found that some of the raw predicted values were out of the [0, 1] range, and improved my leaderboard score by limiting the predicted values to lie within this range.

You do not need to shut down h2o after you finish running a model. In fact you may wish to leave it running so that you can do model diagnostics or run more predictions.

If you wish to save a copy of your model, for later reuse, then you can use the following syntax:


modelPath = h2o.saveModel(model.dl.median, dir = "./model", name = "model_dnn_median", force = TRUE)

Just remember that h2o needs to be running when you save models or load previously saved models.

In my next, and final, blog in this series, I will show how to take advantage of the second information leakage in the competition.

For those who want the entire R script to try out for themselves, here it is:


install.packages("h2o")
library(h2o)
library(png)
library(data.table)

# a function to turn a matrix image into a vector
img2vec = function(img)
{
return (matrix(img, nrow(img) * ncol(img), 1))
}

median_Filter = function(img, filterWidth)
{
pad = floor(filterWidth / 2)
padded = matrix(NA, nrow(img) + 2 * pad, ncol(img) + 2 * pad)
padded[pad + seq_len(nrow(img)), pad + seq_len(ncol(img))] = img

tab = matrix(0, nrow(img) * ncol(img), filterWidth * filterWidth)
k = 1
for (i in seq_len(filterWidth))
{
for (j in seq_len(filterWidth))
{
tab[,k] = img2vec(padded[i - 1 + seq_len(nrow(img)), j - 1 + seq_len(ncol(img))])
k = k + 1
}
}

filtered = unlist(apply(tab, 1, function(x) median(x[!is.na(x)])))
return (matrix(filtered, nrow(img), ncol(img)))
}

# a function that uses median filter to get the background then finds the dark foreground
background_Removal = function(img)
{
w = 5
p = 1.39
th = 240

# the background is found via a median filter
background = median_Filter(img, w)

# the foreground is darker than the background
foreground = img / background
foreground[foreground > 1] = 1

foreground2 = foreground ^ p
foreground2[foreground2 >= (th / 255)] = 1

return (matrix(foreground2, nrow(img), ncol(img)))
}

dirtyFolder = "./data/train"
cleanFolder = "./data/train_cleaned"
outFolder = "./model"
foregroundFolder = "./foreground/train foreground"

outPath = file.path(outFolder, "trainingdata.csv")
outPath2 = file.path(outFolder, "testdata.csv")
filenames = list.files(dirtyFolder)
padding = 2
set.seed(1)
library(h2o)
h2oServer = h2o.init(nthreads = 15, max_mem_size = "110G")

trainData = h2o.importFile(h2oServer, path = outPath)
testData = h2o.importFile(h2oServer, path = outPath2)

model.dl.median <- h2o.deeplearning(x = 2:ncol(trainData), y = 1, training_frame = trainData, validation_frame = testData,
score_training_samples = 0,
overwrite_with_best_model = TRUE,
activation = "Rectifier", seed = 1,
hidden = c(200, 200,200), epochs = 15,
adaptive_rate = TRUE, initial_weight_distribution = "UniformAdaptive", loss = "MeanSquare",
fast_mode = T, diagnostics = T, ignore_const_cols = T,
force_load_balance = T)

summary(model.dl)

modelPath = h2o.saveModel(model.dl.median, dir = "./model", name = "model_dnn_median", force = TRUE)

outFolder = "./model/training data"

img2tab = function(imgX, f)
{
median5 = img2vec(median_Filter(imgX, 5))
median17 = img2vec(median_Filter(imgX, 17))
median25 = img2vec(median_Filter(imgX, 25))
backgroundRemoval = img2vec(background_Removal(imgX))
foreground = readPNG(file.path(foregroundFolder, f))

# pad out imgX
padded = matrix(0, nrow(imgX) + padding * 2, ncol(imgX) + padding * 2)
offsets = expand.grid(seq_len(2*padding+1), seq_len(2*padding+1))

# raw pixels window
padded[padding + seq_len(nrow(imgX)), padding + seq_len(ncol(imgX))] = imgX
x = sapply(seq_len((2*padding+1)^2), function(x) img2vec(padded[offsets[x, 2] - 1 + seq_len(nrow(imgX)), offsets[x, 1] - 1 + seq_len(ncol(imgX))]))

# x2 window
padded[padding + seq_len(nrow(imgX)), padding + seq_len(ncol(imgX))] = median5
x2 = sapply(seq_len((2*padding+1)^2), function(x) img2vec(padded[offsets[x, 2] - 1 + seq_len(nrow(imgX)), offsets[x, 1] - 1 + seq_len(ncol(imgX))]))

# x3 window
padded[padding + seq_len(nrow(imgX)), padding + seq_len(ncol(imgX))] = median17
x3 = sapply(seq_len((2*padding+1)^2), function(x) img2vec(padded[offsets[x, 2] - 1 + seq_len(nrow(imgX)), offsets[x, 1] - 1 + seq_len(ncol(imgX))]))

# x4 window
padded[padding + seq_len(nrow(imgX)), padding + seq_len(ncol(imgX))] = median25
x4 = sapply(seq_len((2*padding+1)^2), function(x) img2vec(padded[offsets[x, 2] - 1 + seq_len(nrow(imgX)), offsets[x, 1] - 1 + seq_len(ncol(imgX))]))

# x5 window
padded[padding + seq_len(nrow(imgX)), padding + seq_len(ncol(imgX))] = backgroundRemoval
x5 = sapply(seq_len((2*padding+1)^2), function(x) img2vec(padded[offsets[x, 2] - 1 + seq_len(nrow(imgX)), offsets[x, 1] - 1 + seq_len(ncol(imgX))]))

# x6 window
padded[padding + seq_len(nrow(imgX)), padding + seq_len(ncol(imgX))] = foreground
x6 = sapply(seq_len((2*padding+1)^2), function(x) img2vec(padded[offsets[x, 2] - 1 + seq_len(nrow(imgX)), offsets[x, 1] - 1 + seq_len(ncol(imgX))]))

dat = data.table(cbind(x, x2, x3, x4, x5, x6))
setnames(dat,c(
paste("x", seq_len((2*padding+1)^2), sep=""),
paste("median5", seq_len((2*padding+1)^2), sep=""),
paste("median17", seq_len((2*padding+1)^2), sep=""),
paste("median25", seq_len((2*padding+1)^2), sep=""),
paste("backgroundRemoval", seq_len((2*padding+1)^2), sep=""),
paste("foreground", seq_len((2*padding+1)^2), sep="")
))

return (dat)
}

dirtyFolder = "./data/test"
outFolder = "./model/test data"
foregroundFolder = "./foreground/test foreground"
filenames = list.files(dirtyFolder)
for (f in filenames)
{
print(f)
imgX = readPNG(file.path(dirtyFolder, f))

dat = img2tab(imgX, f)

x.h2o = as.h2o(h2oServer, dat)
predict.dl = as.data.frame(h2o.predict(model.dl.median, newdata = x.h2o))
imgOut = matrix(as.numeric(predict.dl$predict), nrow(imgX), ncol(imgX))

# correct the pixel brightnesses that are out of bounds
imgOut[imgOut > 1] = 1
imgOut[imgOut < 0] = 0

writePNG(imgOut, file.path(outFolder, f))
}

h2o.shutdown()

Share this:

  • Twitter
  • Facebook

Like this:

Like Loading...

Denoising Dirty Documents: Part 3

14 Friday Aug 2015

Posted by Colin Priest in Adaptive Thresholding, GBM, Gradient Boosting Machine, Image Processing, Kaggle, Machine Learning, R

≈ 9 Comments

Tags

Adaptive Thresholding, GBMs, Image Processing, Kaggle, Machine Learning, R

In my last blog, I discussed how to threshold an image, and we ended up doing quite a good job of cleaning up the image with the creased paper. But then I finished the blog by showing that our algorithm had a problem, it didn’t cope well with coffee cup stains.

coffee stain cropped

The problem is that coffee cup stains are dark, so our existing algorithm does not distinguish between dark writing and dark stains. We need to find some features that distinguish between dark stains and dark writing.20150808 plot 7

Looking at the image, we can see that even though the stains are dark, the writing is darker. The stains are dark compared to the overall image, but lighter than the writing within them,

So we can hypothesise that we might be able to separate the writing from the stains by using thresholding that looks at the pixel brightnesses over a localised set of pixels rather than across all of the image. That way we might separate the darker writing from the dark background stain.

While I am an R programmer and a fan of R, I have to admit that R can be a frustrating platform for image processing. For example, I cannot get the adimpro package to work at all, despite much experimentation and tinkering, and googling for solutions. Then I discovered that the biOps package was removed from CRAN, and the archived versions refuse to install on my PC. But eventually I found ways to get image processing done in R.

First, I tried the EbayesThresh package.


# libraries
if (!require("pacman")) install.packages("pacman")
pacman::p_load(png, raster, EbayesThresh)

# sample image containing coffee cup stain
img = readPNG("C:\\Users\\Colin\\dropbox\\Kaggle\\Denoising Dirty Documents\\data\\train\\3.png")


# using EbayesThresh
et = ebayesthresh(img)
plot(raster(et))
range(et)

20150815 output 1
All of the values are zero! That isn’t very helpful.

Second, I tried the treethresh package.


# experiment with treethresh
if (!require("pacman")) install.packages("pacman")
pacman::p_load(png, raster, treethresh)

# sample image containing coffee cup stain
img = readPNG("C:\\Users\\Colin\\dropbox\\Kaggle\\Denoising Dirty Documents\\data\\train\\3.png")

# using tree thresholding
tt = treethresh(img)
tt.pruned &lt;- prune(tt)
tt.thresholded &lt;- thresh(tt.pruned)
plot(raster(tt.thresholded))
range(tt.thresholded)

Once again I only got zeroes.
Finally, I tried wavelet thresholding using the treethresh package.

# experiment with wavelet thresholding
if (!require("pacman")) install.packages("pacman")
pacman::p_load(png, raster, treethresh)

# sample image containing coffee cup stain
img = readPNG("C:\\Users\\Colin\\dropbox\\Kaggle\\Denoising Dirty Documents\\data\\train\\3.png")

# using wavelet thresholding
# need a square image that has with that is a power of 2
# compute wavelet transform
wt.square &lt;- imwd(img[1:256,1:256])
# Perform the thresholding
wt.thresholded = threshold(wt.square)
# Compute inverse wavelet transform
wt.denoised &lt;- imwr(wt.thresholded)
plot(raster(wt.denoised))

20150815 output 2
It wasn’t what I was looking for, but at least it’s not just a matrix of zeroes!

After these two failures with CRAN packages, I decided that I needed to look beyond CRAN and try out the EBImage package on Bioconductor.


if (!require("EBImage"))
{
source("http://bioconductor.org/biocLite.R")
biocLite("EBImage")
}

# libraries
if (!require("pacman")) install.packages("pacman")
pacman::p_load(png, raster)

# sample image containing coffee cup stain
img = readPNG("C:\\Users\\Colin\\dropbox\\Kaggle\\Denoising Dirty Documents\\data\\train\\3.png")

# using adaptive thresholding
img.eb = readImage("C:\\Users\\Colin\\dropbox\\Kaggle\\Denoising Dirty Documents\\data\\train\\3.png")
img.thresholded.3 = thresh(img.eb, 3, 3)
display(img.thresholded.3)
img.thresholded.5 = thresh(img.eb, 5, 5)
display(img.thresholded.5)
img.thresholded.7 = thresh(img.eb, 7, 7)
display(img.thresholded.7)
img.thresholded.9 = thresh(img.eb, 9, 9)
display(img.thresholded.9)

20150815 output 3

These images show that we are on the right track. The adaptive thresholding is good at separating the letters from the background, but it also adds black to the background. While the adaptive thresholding may not be perfect, any feature extraction that adds to our knowledge will probably improve our ensemble model.

Before we add adaptive thresholding to our model, we will do a bit more pre-processing. Based on the observation that adaptive thresholding is keeping the letters but adding some unwanted black to the background, we can combine all of the adaptive thresholding with normal thresholding images, and use the maximum pixel brightness across each 5 image set.


# a function to do k-means thresholding
kmeansThreshold = function(img)
{
# fit 3 clusters
v = img2vec(img)
km.mod = kmeans(v, 3)
# allow for the random ordering of the clusters
oc = order(km.mod$centers)
# the higher threshold is the halfway point between the top of the middle cluster and the bottom of the highest cluster
hiThresh = 0.5 * (max(v[km.mod$cluster == oc[2]]) + min(v[km.mod$cluster == oc[3]]))

# using upper threshold
imgHi = v
imgHi[imgHi &lt;= hiThresh] = 0
imgHi[imgHi &gt; hiThresh] = 1

return (imgHi)
}

# a function to turn a matrix image into a vector
img2vec = function(img)
{
return (matrix(img, nrow(img) * ncol(img), 1))
}
img.thresholded.3 = thresh(img.eb, 3, 3)
img.thresholded.5 = thresh(img.eb, 5, 5)
img.thresholded.7 = thresh(img.eb, 7, 7)
img.thresholded.9 = thresh(img.eb, 9, 9)
img.thresholded.11 = thresh(img.eb, 11, 11)

# a function to convert an Image into a matrix
Image2Mat = function(Img)
{
m1 = t(matrix(Img, nrow(Img), ncol(Img)))
return(m1)
}

# combine the adaptive thresholding
ttt.1 = cbind(img2vec(Image2Mat(img.thresholded.3)), img2vec(Image2Mat(img.thresholded.5)), img2vec(Image2Mat(img.thresholded.7)),
img2vec(Image2Mat(img.thresholded.9)), img2vec(Image2Mat(img.thresholded.11)), img2vec(kmeansThreshold(img)))
ttt.2 = apply(ttt.1, 1, max)
ttt.3 = matrix(ttt.2, nrow(img), ncol(img))
plot(raster(ttt.3))

20150815 output 4

It’s starting to look much better. The coffee cup stain isn’t removed, but we are starting to successfully clean it up. This suggests that adaptive thresholding will be an important predictor in our ensemble.

Let’s bring it all together, and build a new ensemble model, extending the model from my last blog on this subject.


# libraries
if (!require("pacman")) install.packages("pacman")
pacman::p_load(png, raster, data.table, gbm, foreach, doSNOW)

if (!require("EBImage"))
{
source("http://bioconductor.org/biocLite.R")
biocLite("EBImage")
}

# a function to do k-means thresholding
kmeansThreshold = function(img)
{
# fit 3 clusters
v = img2vec(img)
km.mod = kmeans(v, 3)
# allow for the random ordering of the clusters
oc = order(km.mod$centers)
# the higher threshold is the halfway point between the top of the middle cluster and the bottom of the highest cluster
hiThresh = 0.5 * (max(v[km.mod$cluster == oc[2]]) + min(v[km.mod$cluster == oc[3]]))

# using upper threshold
imgHi = v
imgHi[imgHi &lt;= hiThresh] = 0
imgHi[imgHi &gt; hiThresh] = 1

return (imgHi)
}

# a function that applies adaptive thresholding
adaptiveThresholding = function(img)
{
img.eb &lt;- Image(t(img))
img.thresholded.3 = thresh(img.eb, 3, 3)
img.thresholded.5 = thresh(img.eb, 5, 5)
img.thresholded.7 = thresh(img.eb, 7, 7)
img.thresholded.9 = thresh(img.eb, 9, 9)
img.thresholded.11 = thresh(img.eb, 11, 11)
img.kmThresh = kmeansThreshold(img)

# combine the adaptive thresholding
ttt.1 = cbind(img2vec(Image2Mat(img.thresholded.3)), img2vec(Image2Mat(img.thresholded.5)), img2vec(Image2Mat(img.thresholded.7)), img2vec(Image2Mat(img.thresholded.9)), img2vec(Image2Mat(img.thresholded.11)), img2vec(kmeansThreshold(img)))
ttt.2 = apply(ttt.1, 1, max)
ttt.3 = matrix(ttt.2, nrow(img), ncol(img))
return (ttt.3)
}

# a function to turn a matrix image into a vector
img2vec = function(img)
{
return (matrix(img, nrow(img) * ncol(img), 1))
}

# a function to convert an Image into a matrix
Image2Mat = function(Img)
{
m1 = t(matrix(Img, nrow(Img), ncol(Img)))
return(m1)
}

dirtyFolder = "C:\\Users\\Colin\\dropbox\\Kaggle\\Denoising Dirty Documents\\data\\train"
cleanFolder = "C:\\Users\\Colin\\dropbox\\Kaggle\\Denoising Dirty Documents\\data\\train_cleaned"
outFolder = "C:\\Users\\Colin\\dropbox\\Kaggle\\Denoising Dirty Documents\\data\\train_predicted"

outPath = file.path(outFolder, "trainingdata.csv")
filenames = list.files(dirtyFolder)
for (f in filenames)
{
print(f)
imgX = readPNG(file.path(dirtyFolder, f))
imgY = readPNG(file.path(cleanFolder, f))

# turn the images into vectors
x = matrix(imgX, nrow(imgX) * ncol(imgX), 1)
y = matrix(imgY, nrow(imgY) * ncol(imgY), 1)

# threshold the image
x2 = kmeansThreshold(imgX)

# adaptive thresholding
x3 = img2vec(adaptiveThresholding(imgX))

dat = data.table(cbind(y, x, x2, x3))
setnames(dat,c("y", "raw", "thresholded", "adaptive"))
write.table(dat, file=outPath, append=(f != filenames[1]), sep=",", row.names=FALSE, col.names=(f == filenames[1]), quote=FALSE)
}

# read in the full data table
dat = read.csv(outPath)

# fit a model to a subset of the data
set.seed(1)
rows = sample(nrow(dat), 1000000)
gbm.mod = gbm(y ~ raw + thresholded + adaptive, data = dat[rows,], n.trees = 7500, cv.folds = 3, train.fraction = 0.5, interaction.depth = 5)
best.iter &lt;- gbm.perf(gbm.mod,method="cv",oobag.curve = FALSE)

s = summary(gbm.mod)

# get the predictions - using parallel processing to save time
numCores = 6 #change the 6 to your number of CPU cores. or maybe lower due to RAM limits
cl = makeCluster(numCores)
registerDoSNOW(cl)
num_splits = numCores
split_testing = sort(rank(1:nrow(dat))%%numCores)
yHat = foreach(i=unique(split_testing),.combine=c,.packages=c("gbm")) %dopar% {
as.numeric(predict(gbm.mod, newdata=dat[split_testing==i,], n.trees = best.iter))
}
stopCluster(cl)

# what score do we get on the training data?
rmse = sqrt(mean( (yHat - dat$y) ^ 2 ))
print(rmse)

# show the predicted result for a sample image
img = readPNG("C:\\Users\\Colin\\dropbox\\Kaggle\\Denoising Dirty Documents\\data\\train\\3.png")
x = data.table(matrix(img, nrow(img) * ncol(img), 1), kmeansThreshold(img), img2vec(adaptiveThresholding(img)))
setnames(x, c("raw", "thresholded", "adaptive"))
yHat = predict(gbm.mod, newdata=x, n.trees = best.iter)
imgOut = matrix(yHat, nrow(img), ncol(img))
writePNG(imgOut, "C:\\Users\\Colin\\dropbox\\Kaggle\\Denoising Dirty Documents\\data\\sample.png")
plot(raster(imgOut))

20150815 output 6

The adaptive thresholding gets a relative importance score of 2.4%, but full image thresholding loses all of its importance in the model.

20150815 output 5

The result may not be perfect, but you can see how the coffee cup stain is starting to be erased. We will need to find some more features to continue the clean up, but that will be left to future blogs.

This blog’s model has improved the RMSE on the training data from 6.5% reported in my last blog to 5.4% in this latest version. There’s a long way to go to have a top 10 performing model, but this process is steadily moving us in the right direction.

Share this:

  • Twitter
  • Facebook

Like this:

Like Loading...

Blogroll

  • Discover New Voices
  • Discuss
  • Get Inspired
  • Get Mobile
  • Get Polling
  • Get Support
  • Great Reads
  • Learn WordPress.com
  • Theme Showcase
  • WordPress.com News
  • www.r-bloggers.com

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 277 other subscribers

Blog at WordPress.com.

  • Follow Following
    • Keeping Up With The Latest Techniques
    • Join 86 other followers
    • Already have a WordPress.com account? Log in now.
    • Keeping Up With The Latest Techniques
    • Customize
    • Follow Following
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...
 

    %d bloggers like this: